气体检测仪

400 086 1088

EN

「VOC气体分析仪」室内空气检测技术及VOC传感器

2019-08-20

VOC气体分析仪:室内空气检测技术及VOC传感器

人们每时每刻都离不开氧,并通过吸入空气而获得氧。一个成年人每天需要吸入空气达6500升以获得足够的氧气,因此,被污染了的空气对人体健康有直接的影响。人的一生中有90%以上时间在室内度过,室内空气品质对人的影响更是至关重要。

随着市场经济与科学技术的不断发展,建筑领域的发展也日新月异,人们对生活质量的要求越来越高,建筑装修装饰的标准也随之增高,那么室内空气污染现象也就伴随而生。

室内主要污染物来源

室内空气污染物的来源主要有五个方面:

1、室外空气污染,大气中的粉尘、汽车和工业废气中的NOx、CO、SO2和可吸入颗粒物。

2、建筑装修材料和室内设备,相关污染物如酚醛树脂、脲醛树脂类化合物中的甲醛,加湿剂带来的多种细菌、真菌和孢子,粘合剂中的多种挥发性有机物等; 毒物质,呼气中含16种挥发性有毒物质。

3、放射性污染:即电离辐射污染,氡、钍、镭等放射性核素。房基地本身渗透的氡及其子体以及各种建筑材料中的放射性物质。其中,C射线来自房屋的建材大理石、花岗岩等天然石材或掺工业废渣的建筑装饰材料、陶瓷砖等。氡及其子体来源于建材如花岗岩、砖砂、水泥、石膏以及受氡源污染的煤气、水等。

4、生物污染:军团菌、放线菌等细菌,曲霉菌、葡萄状穗霉菌等真菌,病菌,花粉,虫螨等。自然情况下,人类呼吸道传染病绝大部分是在室内传播感染的致病菌。仅引起呼吸道感染的病毒有200种之多,这些感染的发生绝大部分是在室内通过空气传播的。

室内污染物防治技术

随着人们对室内空气质量的重视和技术的发展,室内污染防治措施日趋增多。主要有吸附净化、紫外线消毒、化学消毒、光催化氧化、空气负离子技术、生物净化、植物净化等。近几年发展比较快的有光催化氧化及其与其它技术相结合的技术。

光催化氧化

光催化氧化技术原理是采用二氧化钛(TiO2)进行光催化,直接利用包括太阳能在内的各种来源的紫外光,在常温下对各种有机和无机污染物进行分解或氧化,其分解成为H2O和CO2,达到净化空气的目的[4]。经报道,在波长254 nm的紫外光下,以光催化剂TiO2活性炭纤维作载体,对甲醛进行吸附和光催化氧化,96%的甲醛被去除[5]。光催化氧化优点是能耗低、操作简单、无二次污染;缺点是利用太阳光效率低、反应速度慢。有文献指出,将光催化氧化和其它技术复合时可以通过不同技术间的协同作用来提高有害气体的脱除效果。

1、光催化氧化和催化氧化技术的复合

对TiO2进行镀铂,在温度为333K或更高时,挥发性有机物如甲苯、乙烯等活性不高的VOCS的氧化转化效果提高。在热催化和光催化的共同作用下,可以实现对所有VOCS的全部氧化。

2、光催化氧化和吸附技术的复合

通过吸附剂将有害气体吸附在催化剂上,再在其表面进行催化反应,可以使有害气体在较短的时间内扩散到催化剂表面,并使表面气体浓度增大,加快反应速率,强化了脱除效果。以高比表面积的活性炭为吸附剂,在HZSM-5型分子筛上负载TiO2作催化剂,在紫外光照射下,甲醛浓度在10min内由1. 0mg/m3降为0. 1mg/m3; 90min后几乎检测不到甲醛。

3、光催化氧化和等离子体技术的复合

该技术采用大量高能电子轰击产生的O-(或O2-)和OH-等活性粒子,使有机物分子分解为CO2和H2O,随着紫外光的辐射还可以起到杀菌消毒的作用。通过采用等离子体和光催化对三氯乙烯进行脱除实验,发现单独使用二者时,三氯乙烯降解率分别为32. 0%和141%,而将等离子体和光催化复合时,其降解率达到75.4%[8]。由此可见,等离子体和光催化之间有明显的协同作用,可以显著提高催化剂的反应活性。

臭氧净化技术

由于臭氧为轻微离子结合体,结合状态极不稳定,在常温下会缓慢分解成氧气,将单氧分离出来,臭氧参与物质分解后还原成氧气。对甲醛、一氧化碳的分解机理如下:

甲醛: 3HCHO+2O3y3H2O+3CO2、一氧化碳:CO+O3yCO2+ O2研究表明,低浓度臭氧(0. 050~0. 075mg/m3)可净化室内空气甲醛污染,净化率为42%。

缺点是臭氧是一种具有刺激性和强氧化性的有害气体,会污染室内空气。

空气负离子技术

空气负离子技术一方面可以与室内空气中的微小颗粒物相吸附,成为带电的大离子沉降,另一方面使细菌蛋白质表层电性两极发生颠倒,促使细菌死亡,对人体的健康十分有益。空气负离子的发射技术主要有:电晕放电、水发生和放射发生。实验表明,HE系列空气负离子发生器使氡子体浓度明显降低50%左右。优点是主机便宜,噪声小,体积小;缺点是粒子并未收集或过滤效果差,产生臭氧,造成二次污染。

生物净化技术

生物法处理大气污染物是一项新兴技术,主要是过滤器中的多孔填料表面覆盖有生物膜,污染物与膜内的微生物相接触发生生物化学反应,使其完全降解为CO2和H2O。[11]生物净化技术基本方法有生物过滤法、生物洗涤法、生物吸收法等。当NO通过生物土壤填装的滤塔,结果当NO进口浓度为211mg/m3,停留时间为2min时,NO去除率为60%左右[12]。羌宁等研究了生物滴滤器净化甲苯废气,结果表明:在甲苯负荷每小时小于280g/ms,停留时间15. 73s的条件下,表观气速230m/h时,可保持90%以上的净化率。

VOC及其危害

VOC,即挥发性有机物(Volatile Organic Compounds)。美国环境署(EPA)对VOC的定义是:除了一氧化碳、二氧化碳、碳酸、金属碳化物、碳酸盐以及碳酸铵外,任何参与大气中光化学反应的含碳化合物。百度百科对VOC的描述是:“在常温下可以蒸发的形式存在于空气中,它的毒性、刺激性、致癌性和特殊的气味性,会影响皮肤和黏膜,对人体产生急性损害……是一类重要的空气污染物。”

当VOC在居室空气里达到一定浓度,人们会开始感到头痛、恶心、四肢乏力;假如继续长时间逗留,会伤害肝、肾、大脑和神经系统,甚至可能引起抽搐、昏迷、导致记忆力减退,带来严重后果。 VOC危害如此严重,可它又是从何而来呢?专家指出,墙壁、天花板、地面等建材,以及乳胶漆、墙纸、绝热材料、粘合剂等装饰材料都是VOC的主要来源。需要特别指出的是:装修最常使用的乳胶漆的VOC,主要来自于原材料的VOC,包括甲醛、氨、乙二醇等,所以控制原材料的VOC含量至关重要!

室内空气中高浓度的VOC显着影响到居住者的舒适感。CO2是无味的,但VOC气味很重,而且大部份VOC令人不愉快。另外,空气中VOC的影响不仅仅是让人感到不舒服。美国国家环境保护局(EPA)网站列出了短期和长期的健康影响,指出这些影响可能与室内空气中的VOC有关。EPA指出的这些影响包括:眼睛、鼻子和喉咙有刺激感;头痛、失去协调和恶心;损害肝、肾,以及中枢神经系统;一些有机物会导致动物癌症;有些甚至被怀疑或已知会导致人类癌症。

空气质量检测的强力武器——传感器

检测技术是人们认识和改造世界的一种必不可少的重要技术手段。而传感器是科学实验和工业生产等活动中对信息资源的开发获取、传输与处理的一种重要工具。

气体传感器是一种能感知环境中某种气体的种类和浓度的装置或者器件,并能够将其相关信息转换为电信号以便于对待测气体进行监测、分析及报警。伴随着人们对环境空气质量要求的提高,对于性能优良的便携式在线气体传感器检测仪的需求和要求也越来越高,一个完美的气体传感器应该具有以下几个特点:

(1)选择性好,能够在多种气体共存的环境中对被测气体有明显的响应特征;

(2)灵敏度高,具有宽的检测范围和低的检出限;

(3)信号响应和恢复速度快,且可逆性好;

(4)抗电磁等干扰能力强,重现性和稳定性好,具有较长的保存和使用寿命;

(5)结构简单,低耗价廉,使用和维修方便;

(6)小型便携,智能化和多功能化,便于在线现场分析。

常见VOC气体传感器根据其工作原理主要分为三大类:电化学气体传感器(如电阻、电流、阻抗、电位等)、光学类传感器(包括光谱吸收型、荧光法、可视化法等)以及质量型气体传感器(例如石英晶体微天平和表面声波气体传感器)等。按照气敏材料可以分为半导体金属氧化物材料、有机聚合物材料、无机-有机复合材料等。近年来,气体传感器的发展趋势是微型化、智能化和多功能化。

「红外气体传感器」浅谈红外气体传感器

OTHER RELATED

其他相关新闻

气体分析仪 红外烟气分析仪 红外气体传感器 气体稀释仪 沼气分析仪 天然气分析仪 VOC分析仪 气体配气仪
深圳市昂为电子有限公司 版权所有 © 2004-2024    备案号粤ICP备09176163号